Reinforcement Learning for Reactive Jamming Mitigation

نویسندگان

  • Marc Lichtman
  • Jeffrey H. Reed
چکیده

In this paper, we propose a strategy to avoid or mitigate reactive forms of jamming using a reinforcement learning approach. The mitigation strategy focuses on finding an effective channel hopping and idling pattern to maximize link throughput. Thus, the strategy is well-suited for frequency-hopping spread spectrum systems, and best performs in tandem with a channel selection algorithm. By using a learning approach, there is no need to pre-program a radio with specific anti-jam strategies and the problem of having to classify jammers is avoided. Instead the specific anti-jam strategy is learned in real time and in the presence of the jammer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-jamming Communications Using Spectrum Waterfall: A Deep Reinforcement Learning Approach

This letter investigates the problem of anti-jamming communications in dynamic and unknown environment through on-line learning. Different from existing studies which need to know (estimate) the jamming patterns and parameters, we use the spectrum waterfall, i.e., the raw spectrum environment, directly. Firstly, to cope with the challenge of infinite state of raw spectrum information, a deep an...

متن کامل

NOVEL MITIGATION METHODS AGAINST REACTIVE JAMMING ATTACK: THEORETICAL AND PRACTICAL SOLUTIONS By INCHEOL SHIN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy NOVEL MITIGATION METHODS AGAINST REACTIVE JAMMING ATTACK: THEORETICAL AND PRACTICAL SOLUTIONS By Incheol Shin August 2010 Chair: My Tra Thai Major: Computer Engineering Wireless Sensor Networks (WSNs) consist of many spatially deployed s...

متن کامل

Jamming Bandits

Can an intelligent jammer learn and adapt to unknown environments in an electronic warfare-type scenario? In this paper, we answer this question in the positive, by developing a cognitive jammer that adaptively and optimally disrupts the communication between a victim transmitter-receiver pair. We formalize the problem using a novel multi-armed bandit framework where the jammer can choose vario...

متن کامل

Two-dimensional Anti-jamming Mobile Communication Based on Reinforcement Learning

By using smart radio devices, a jammer can dynamically change its jamming policy based on opposing security mechanisms; it can even induce the mobile device to enter a specific communication mode and then launch the jamming policy accordingly. On the other hand, mobile devices can exploit spread spectrum and user mobility to address both jamming and interference. In this paper, a two-dimensiona...

متن کامل

IoT Security Techniques Based on Machine Learning

Internet of things (IoT) that integrate a variety of devices into networks to provide advanced and intelligent services have to protect user privacy and address attacks such as spoofing attacks, denial of service attacks, jamming and eavesdropping. In this article, we investigate the attack model for IoT systems, and review the IoT security solutions based on machine learning techniques includi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014